Rabu, 18 April 2012

Struktur Aljabar

Aljabar abstrak

Aljabar abstrak adalah bidang subjek matematika yang mempelajari struktur aljabar, seperti grup, ring, medan, modul, ruang vektor, dan aljabar medan. Frasa aljabar abstrak diciptakan pada awal abad ke-20 untuk membedakannya dengan bidang yang biasa disebut sebagai aljabar, yaitu studi aturan manipulasi rumus dan ekspresi aljabar yang melibatkan variabel dan bilangan riil atau kompleks, yang saat ini lebih sering disebut sebagai aljabar elementer. Perbedaan ini jarang dikemukakan pada tulisan-tulisan matematika yang lebih mutakhir.
Matematika kontemporer dan fisika matematika menggunakan aljabar abstrak secara intensif. Sebagai contoh, fisika teoretis mengandalkan aljabar Lie. Bidang subjek seperti teori bilangan aljabar, topologi aljabar dan geometri aljabar menerapkan metode aljabar terhadap bidang matematika lain. Secara kasar, dapat disebutkan bahwa teori representasi mengeluarkan istilah 'abstrak' dari 'aljabar abstrak', dan mempelajari sisi konkret dari suatu struktur (lihat pula teori model).
Dua bidang subjek matematika yang mempelajari sifat-sifat struktur aljabar yang dipandang secara keseluruhan adalah aljabar universal dan teori kategori. Struktur aljabar, bersama-sama dengan homomorfisme yang berkaitan, membentuk kategori. Teori kategori adalah formalisme ampuh untuk mempelajari dan membandingkan berbagai struktur aljabar yang berbeda-beda.

Kalkulus Diferensial 

 

Bahasan dalam kalkulus
Teorema dasar
Limit fungsi
Kekontinuan
Kalkulus vektor
Kalkulus matriks
Teorema nilai purata
Turunan
Kaidah darab
Kaidah hasil-bagi
Kaidah rantai
Turunan implisit
Teorema Taylor
Laju berhubungan
Tabel turunan
Integral
Tabel integral
Integral takwajar
Pengintegralan dengan:
bagian per bagian, cakram, silinder, substitusi,
substitusi trigonometri,
pecahan parsial
Kalkulus diferensial adalah salah satu cabang kalkulus dalam matematika yang mempelajari bagaimana nilai suatu fungsi berubah menurut perubahan input nilainya. Topik utama dalam pembelajaran kalkulus diferensial adalah turunan. Turunan dari suatu fungsi pada titik tertentu menjelaskan sifat-sifat fungsi yang mendekati nilai input. Untuk fungsi yang bernilai real dengan variabel real tunggal, turunan pada sebuah titik sama dengan kemiringan dari garis singgung grafik fungsi pada titik tersebut. Secara umum, turunan suatu fungsi pada sebuah titik menentukan pendekatan linear terbaik fungsi pada titik tersebut.
Proses pencarian turunan disebut pendiferensialan (differentiation). Teorema dasar kalkulus menyatakan bahwa pendiferensialan adalah proses keterbalikan dari pengintegralan.
Turunan mempunyai aplikasi dalam semua bidang kuantitatif. Di fisika, turunan dari perpindahan benda terhadap waktu adalah kecepatan benda, dan turunan dari kecepatan terhadap waktu adalah percepatan. Hukum gerak kedua Newton menyatakan bahwa turunan dari momentum suatu benda sama dengan gaya yang diberikan kepada benda.
Laju reaksi dari reaksi kimia juga merupakan turunan. Dalam riset operasi, turunan menentukan cara paling efisien dalam memindahkan bahan dan mendesain pabrik. Dengan menerapkan teori permainan, turunan dapat memberikan strategi yang paling baik untuk perusahaan yang sedang bersaing.
Turunan sering digunakan untuk mencari titik ekstremum dari sebuah fungsi. Persamaan-persamaan yang melibatkan turunan disebut persamaan diferensial dan sangat penting dalam mendeskripsikan fenomena alam. Turunan dan perampatannya (generalization) sering muncul dalam berbagai bidang matematika, seperti analisis kompleks, analisis fungsional, geometri diferensial, dan bahkan aljabar abstrak.

Daftar isi

Aljabar Linier

Aljabar linear adalah bidang studi matematika yang mempelajari sistem persamaan linear dan solusinya, vektor, serta transformasi linear. Matriks dan operasinya juga merupakan hal yang berkaitan erat dengan bidang aljabar linear.

Daftar isi

Kalkulus

Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu mengenai perubahan, sebagaimana geometri adalah ilmu mengenai bentuk dan aljabar adalah ilmu mengenai pengerjaan untuk memecahkan persamaan serta aplikasinya. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.
Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika.
Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus Moskwa Mesir (c. 1800 SM) di mana orang Mesir menghitung volume piramida terpancung[1]. Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristik yang menyerupai kalkulus integral.[2]
Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil takterhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar.[3] Persamaan ini kemudian mengantar Bhāskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari "Teorema Rolle".[4] Sekitar tahun 1000, matematikawan Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral.[5] Pada abad ke-12, seorang Persia Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial. [6] Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari mazhab astronomi dan matematika Kerala, menjelaskan kasus khusus dari deret Taylor[7], yang dituliskan dalam teks Yuktibhasa.[8][9][10]
Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis dan Isaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.
Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisika sementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang.
Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society.
Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya "The science of fluxions".
Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus.
Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus.[11]

Pengaruh penting

Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.
Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.
Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut.

Daftar isi